Strict equilibria interchangeability in multi-player zero-sum games

نویسندگان

  • Pavel Naumov
  • Italo Simonelli
چکیده

The interchangeability property of Nash equilibria in two-player zerosum games is well-known. This paper studies possible generalizations of this property to multi-party zero-sum games. A form of interchangeability property for strict Nash equilibria in such games is established. It is also shown, by proving a completeness theorem, that strict Nash equilibria do not satisfy any other non-trivial properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Hardness and Existence of Quasi-Strict Equilibria

This paper investigates the computational properties of quasi-strict equilibrium, an attractive equilibrium refinement proposed by Harsanyi, which was recently shown to always exist in bimatrix games. We prove that deciding the existence of a quasi-strict equilibrium in games with more than two players is NP-complete. We further show that, in contrast to Nash equilibrium, the support of quasi-s...

متن کامل

An Ordinal Minimax Theorem

One of the earliest solution concepts considered in game theory are saddle points, combinations of actions such that no player can gain by deviating (see, e.g., von Neumann and Morgenstern, 1947). In two-player zero-sum games, every saddle point happens to coincide with the optimal outcome both players can guarantee in the worst case and thus enjoys a very strong normative foundation. Unfortuna...

متن کامل

Computing Uniformly Optimal Strategies in Two-Player Stochastic Games

We provide a computable algorithm to calculate uniform ε-optimal strategies in two-player zero-sum stochastic games. Our approach can be used to construct algorithms that calculate uniform ε-equilibria and uniform correlated ε-equilibria in various classes of multi-player non-zero-sum stochastic games. JEL codes: C63, C73.

متن کامل

⎩ xp ∈ R

In the previous lecture we saw that there always exists a Nash equilibrium in two-player zero-sum games. Moreover, the equilibrium enjoys several attractive properties such as polynomial-time tractability, convexity of the equilibrium set, and uniqueness of players’ payoffs in all equilibria. In this lecture we explore whether we can generalize this theorem to multi-player zero-sum games. Befor...

متن کامل

The Testable Implications of Zero-sum Games

We study collective choices from the revealed preference theory viewpoint. For every product set of individual actions, joint choices are called Nash-rationalizable if there exists a preference relation for each player such that the selected joint actions are Nash equilibria of the corresponding game. We characterize Nash-rationalizable joint choice behavior by zero-sum games, or games of confl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Log. Comput.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014